

Semester Two Examination, 2022

Question/Answer booklet

٦Г

MATHEMATICS SPECIALIST **UNITS 3&4**

WA student number:

Section One: Calculator-free

In figu

res

In words

Time allowed for this section

Reading time before commencing work: Working time:

five minutes fifty minutes

Number of additional answer booklets used (if applicable):

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

pens (blue/black preferred), pencils (including coloured), sharpener, Standard items: correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	7	7	50	49	35
Section Two: Calculator-assumed	12	12	100	91	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of Trinity College examinations are detailed in the *Instructions to Candidates* distributed to students prior to the examinations. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answers to the specific question asked and to follow any instructions that are specific to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

See next page

Section One: Calculator-free

This section has seven questions. Answer all questions. Write your answers in the spaces provided.

Working time: 50 minutes.

35% (49 Marks)

TRINITY COLLEGE SPECIALIST UNITS 3&4

4

Question 1

The equations of planes Π_1,Π_2 and Π_3 are shown below.

$$\mathbf{r} = \begin{pmatrix} 2\\5\\3 \end{pmatrix} + \lambda \begin{pmatrix} -1\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \qquad \mathbf{r} \cdot \begin{pmatrix} 2\\1\\2 \end{pmatrix} = 18 \qquad x - y + z = 15$$

(a) Show that the equation of plane Π_1 in Cartesian form is 2x + y - z = 6. (3 marks)

Solution

 Cross product of vectors in plane is
$$\mathbf{a} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \\ -5 \end{pmatrix}$$
.

 Let normal to plane be $\mathbf{n} = \frac{1}{5}\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, so that $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = 4 + 5 - 3 = 6.$

Hence Cartesian equation is 2x + y - z = 6.

Specific behaviours

 \checkmark writes cross product of two vectors that lie in Π_1

✓ obtains normal to plane

 \checkmark uses vector equation $\mathbf{r}\cdot\mathbf{n}=\mathbf{a}\cdot\mathbf{n}$ to derive Cartesian equation

(b) The origin lies on the surface of sphere *S*. Determine the vector equation of *S*, given that its centre is the point of intersection of the three planes. (5 marks)

Solution
$$2x + y - z = 6$$
 $2x + y + 2z = 18$ $x - y + z = 15$ Subtracting first from middle gives $3z = 12 \Rightarrow z = 4$.Adding first to last gives $3x = 21 \Rightarrow x = 7$.Hence $y = 7 + 4 - 15 = -4$ and so intersect at $(7, -4, 4)$.Distance from centre of S to 0 is $\sqrt{7^2 + 4^2 + 4^2} = 9$.Hence equation of S is $\left| \mathbf{r} - \begin{pmatrix} 7 \\ -4 \\ 4 \end{pmatrix} \right| = 9$.Specific behaviours \checkmark writes system of equations, correctly starts elimination \checkmark solves for one variable \checkmark solves for all variables \checkmark determines distance from origin \checkmark correctly writes equation of sphere

(8 marks)

Question 2

(a) Draw the solution curve through *P* on the slope field above.

(2 marks)

Solution
See slope field
Specific behaviours
\checkmark curve to left of y-axis has two inflection points and follows slope field
\checkmark curve to right of y-axis has two inflection points and follows slope field

(b) Determine the equation of the solution curve through *P* in the form y = f(x). (4 marks)

Solution

$$\int y^{-2} dy = \int \sin^2 x \, dx$$

$$\int y^{-2} dy = \int \frac{1}{2} (1 - \cos 2x) \, dx$$

$$-\frac{1}{y} = \frac{1}{2} x - \frac{1}{4} \sin 2x + c$$

$$P(0, -0.5) \Rightarrow c = 2$$

$$y = -\frac{1}{\frac{1}{2}x - \frac{1}{4} \sin 2x + 2} = \frac{4}{\sin 2x - 2x - 8}$$
Specific behaviours
 \checkmark separates variables as an integration statement
 \checkmark correctly uses trig identity on RHS
 \checkmark correctly obtains antiderivative, with constant
 \checkmark evaluates constant and writes in required form

(c) Briefly describe how the graph of
$$y = f(x)$$
 can be used to sketch the graph of $y = g(x)$
and hence state the domain and range of $g(x)$. (4 marks)

Solution
The graph of $y = g(x)$ is the same as the graph of $y = \frac{1}{f(x)}$.
Domain $D_g = \{x \mid x \in \mathbb{R}, x \neq 1, x \neq -3\}.$
Range $R_g = \left\{ y \mid y \in \mathbb{R}, y > 0 \cup y \le -\frac{1}{2} \right\}.$
Specific behaviours
\checkmark explains $g(x)$ is reciprocal of $f(x)$
\checkmark correct restrictions on x for domain
\checkmark states $y > 0$ component of range
✓ states $y \le -\frac{1}{2}$ component of range

6

Question 3

(7 marks)

(1 mark)

(2 marks)

(7 marks)

Question 4

An electronic circuit will remain stable when x and y, the resistances in ohms of two variable resistors in the circuit, satisfy

$$\frac{3}{x} + \frac{5}{y} = \frac{1}{10}.$$

(a) When y is decreasing at a rate of 5 ohms per second, determine the rate that x must be changing for the circuit to remain stable when y = 200 ohms. (4 marks)

Solution			
Require $\frac{dx}{dt}$ given $\frac{dy}{dt} = -5$, so implicitly differentiate wrt <i>t</i> :			
$-\frac{3}{x^2}\frac{dx}{dt} - \frac{5}{y^2}\frac{dy}{dt} = 0 \Rightarrow \frac{dx}{dt} = -\frac{5x^2}{3y^2}\frac{dy}{dt}$			
$\frac{3}{x} + \frac{5}{200} = \frac{1}{10} \to \frac{3}{x} = \frac{2}{20} - \frac{1}{20} \to x = 40$			
$\frac{dx}{dt} = -\frac{5 \times 40 \times 40}{3 \times 200 \times 200} \times -5 = \frac{1}{3}$			
Hence x must increase at $\frac{1}{3}$ ohms per second for stability.			
Specific behaviours			
✓ implicitly differentiates equation			
\checkmark obtains expression for \dot{x}			
\checkmark indicates correct values for \dot{y} and x			
\checkmark correctly evaluates \dot{x}			

(b) The circuit is stable, the resistance of x is increasing at 6 ohms per second and has just reached 60 ohms. Use the technique of increments to calculate the approximate change in the resistance of y in the next tenth of a second. (3 marks)

Solution		
$\delta t = 0.1, \qquad \frac{3}{60} + \frac{5}{y} = \frac{1}{10} \rightarrow \frac{5}{y} = \frac{2}{20} - \frac{1}{20} \rightarrow y = 100$		
$\delta y \approx \frac{dy}{dt} \delta t$ $= -\frac{3y^2}{5x^2} \frac{dx}{dt} \delta t$ $= -\frac{3 \times 100 \times 100}{5 \times 60 \times 60} \times 6 \times 0.1$ $= -1 \text{ ohm}$ Resistance of y will decrease by 1 ohm.		
Specific behaviours		
\checkmark states correct values for y and δt		
\checkmark forms correct expression for δy		
\checkmark correct value for δy		

TRINITY COLLEGE SPECIALIST UNITS 3&4

8

(6 marks)

Question 5

Let $f(z) = 2z^3 + az^2 + 12z + b$, where *a* and *b* are real constants.

One of the roots of f(z) is $z = 1 - \sqrt{2}i$.

(a) Determine the value of the constant *a* and the value of the constant *b*. (4 marks)

SolutionProduct of factors using given root and conjugate:
 $(z - (1 - \sqrt{2}i))(z - (1 + \sqrt{2}i)) = z^2 - 2z + 3$ Hence $f(z) = 2z^3 + az^2 + 12z + b = (z^2 - 2z + 3)(2z + k)$ Comparing z coefficients:
 $12 = 6 - 2k \Rightarrow k = -3$ Hence from expansion of factors, a = k - 4 = -7 and b = 3k = -9.
a = -7, b = -9Specific behaviours \checkmark indicates conjugate is another root
 \checkmark obtains quadratic factor of f(x)
 \checkmark uses quadratic factor to obtain linear factor
 \checkmark states correct values for a and b

(b) Show all the roots of f(z) in the complex plane below.

(2 marks)

Question 6

(a) The line y = x and the curve $y = \frac{2x^3}{x^2 + 4}$ are shown in the diagram. They intersect at the origin and at x = 2.

Determine the area between the curve and the line in the first quadrant.

Hint: use algebraic long division or substitution

(5 marks)

(8 marks)

Solution		
To determine area under curve let $u = x^2 + 4$, so that $du = 2x dx$,		
$x = 0 \rightarrow u = 4$ and $x = 2 \rightarrow u = 8$. Then		
$\int_{0}^{2} x^{2}$ $\int_{0}^{8} u - 4$		
$\int_{a} \frac{1}{x^{2}+4} 2x dx = \int_{a} \frac{1}{y} du$		
$\int \frac{1}{\sqrt{8}} \frac{1}{$		
$=$ $1 - \frac{1}{-du}$		
$J_4 u$		
$= [u - 4 \ln u]_4^8$		
$= (8 - 4 \ln 8) - (4 - 4 \ln 4)$		
$= 4 - 4(\ln 8 - \ln 4) = 4 - 4\ln 2$		
Area under line is $\frac{1}{2}(2)(2) = 2$.		
Hence area between is $2 - (4 - 4 \ln 2) = 4 \ln(2) - 2$ sq units.		
Specific behaviours		
✓ chooses suitable substitution		
\checkmark writes integral in terms of u		
✓ obtains antiderivative		
✓ obtains area under curve		
✓ obtains area between		

(b) Given that
$$\int_{2}^{8} \frac{f(x)}{x^2} dx = 6$$
, determine $\int_{1}^{4} f\left(\frac{8}{x}\right) dx$. (3 marks)

Hint: use substitution.

Solution
Let
$$u = \frac{8}{x}$$
, so that $x = \frac{8}{u}$, $dx = -\frac{8}{u^2}du$, $x = 1 \rightarrow u = 8$ and $x = 4 \rightarrow u = 2$.
Then

$$\int_{1}^{4} f\left(\frac{8}{x}\right)dx = \int_{8}^{2} f(u)\left(-\frac{8}{u^2}\right)du$$

$$= -(-8)\int_{2}^{8} \frac{f(u)}{u^2}du$$

$$= 8 \times 6 = 48$$

$$\checkmark \text{ chooses substitution and relates } dx \text{ and } du$$

$$\checkmark \text{ writes integral in terms of } u$$

$$\checkmark \text{ derives correct value}$$

See next page

TRINITY COLLEGE SPECIALIST UNITS 3&4

Question 7

(a) Determine the value of the constant *A* and the value of the constant *B* so that

$$\frac{4}{(3x-1)(x+1)} = \frac{A}{3x-1} + \frac{B}{x+1}.$$

(2 marks)

SolutionCombining RHS into single fraction and equating numerators: $Ax + A + 3Bx - B = 4 \Rightarrow A - B = 4, A + 3B = 0$ Hence A = 3 and B = -1.Specific behaviours \checkmark indicates appropriate method \checkmark solves for A, B correctly

(b) Hence use the substitution $u = \cos x$ to determine

$$\int \frac{4\sin x}{\cos^2 x + \cos 2x + 2\cos x} dx.$$

(5 marks)

Solution
Simplify denominator

$$\cos^2 x + (2\cos^2 x - 1) + 2\cos x = 3\cos^2 x + 2\cos x - 1$$

 $= 3u^2 + 2u - 1$
 $= (3u - 1)(u + 1)$
Also
 $u = \cos x \Rightarrow du = -\sin x \, dx$
Hence
 $\int \frac{-4}{3\cos^2 x + 2\cos x - 1} (-\sin x) dx = \int \frac{-4}{(3u - 1)(u + 1)} \, du$
 $= \int \frac{1}{u + 1} - \frac{3}{3u - 1} \, du$
 $= \ln|u + 1| - \ln|3u - 1| + c$
 $= \ln|\cos x + 1| - \ln|3\cos x - 1| + c$
 $= \ln \left|\frac{\cos x + 1}{3\cos x - 1}\right| + c$
Specific behaviours
 \checkmark simplifies denominator in terms of $\cos x$
 \checkmark correctly relates dx and du
 \checkmark uses partial fractions to express integral in terms of u
 \checkmark obtains antiderivative with absolute value brackets
 \checkmark correct result in terms of x , and integration constant

(7 marks)

Supplementary page

Question number: _____

© 2022 WA Exam Papers. Trinity College has a non-exclusive licence to copy and communicate this document for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers. SN108-204-3.